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A good picture is worth a
thousand words

* Expressive power is the first
explanation for a success of
graphs

» More claims for graphs come later

« Example for a title above follows!
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Greek pre-Socratic Philosophers

¢ Thales of Miletus influenced Anaximander, Pythagoras, Heraclitus
and Anaximenses of Miletus

Anaximander infl. Pythagoras
Pherecides of Syros infl. Pythagoras
Anaximander infl. Heraclitus
Pythagoras infl. Heraclitus
Pythagoras infl. Empedocles Question for you:
Pythagoras infl. Philolaus
Pythagoras infl. Archytas
Pythagoras infl. Alcmaeon of Croton  Next question:
Philolaus infl. Archytas Did Pythagoras infl. Melissus of
Heraclitus infl. Parmenides Samos?
Parmenides infl. Democritus
Democritus infl. Philolaus
Parmenides infl. Melissus of Samos
Parmenides infl. Socrates

¢ Leucippus infl. Democritus, (and this is about 60% of the story)
15/10/2015

Did Heraclitus infl. Archytas?

3/72

Greek pre-Socratic Philosophers

; :|. )
Question for you:

Did Heraclitus infl. Archytas?

Next question:

Did Pythagoras infl. Melissus of
Samos?

472




The whole Greek Pre-Socratic Philosopher in GRAPH, and
same questions for you now:
Did Heraclitus infl. Archytas? Did Pythagoras infl. Melissus of Samos?

Tan ot b

o -
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§ 9.1 What are Graphs?

Not

» Technical meaning in discrete mathematics:

A particular class of discrete structures (to be
defined) that is useful for representing
relations and has a convenient webby-looking

graphical representation. W

15/10/2015 6/72

Applications of Graphs

» Potentially anything (graphs can
represent relations, relations can
describe the extension of any predicate).

» Apps in networking, scheduling, flow
optimization, circuit design, path
planning.

» Geneology analysis, computer game-
playing, program compilation, object-
oriented design, ...

15/10/2015 e

Simple Graphs

» Correspond to symmetric
binary relations R. I@
» A simple graph G=(V,E) visual Representation

consists of: of a Simple Graph

— a set V of vertices or nodes (V corresponds to
the universe of the relation R),

— a set E of edges (arcs, links): unordered pairs
of (distinct) elements u,v € V, such that uRv.

Note, in a simple graph there is only ONE EDGE
between vertices & no ARROWS & no LOOPS
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Example of a Simple Graph

» Let V be the set of states in the
southeastern U.S.:
-V={FL, GA, AL, MS, LA, SC, TN, NC}
* Let E={{u,v}|u adjoins v}

={{FL,GA},{FL,AL},
{GA AL}, {GA,SC},{GA, TN},

{MS,LA}, {MS, TN},

TN NC
{GA,NC}, {AL,MS}, {AL, TN}, M A\" C
‘ A

FL

LA

{TN,NC},{NC,SC}}

15/10/2015
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Well, what's simpler and clearer in

Southeastern U.S.

cass e — P .
Wee, 55— ey LD

Sure, this is not bad either Y

15/10/2015 A j

Multigraphs

 Like simple graphs, but there may be
more than one edge connecting two
given nodes.

* A multigraph G=(V, E, f) consists of a
set V of vertices, a set E of edges (as
primitive objects), and a function
f: E>{u,v}u,veV A uzv}.

* e.g., nodes are cities, edges

are segments of major highways.%

15/10/2015

" parallel

edges

11/72

Pseudographs

 Like a multigraph, but edges connecting
a node to itself are allowed.

» A pseudograph G=(V, E, f) where
f.E—>{{u,v}lu,veV}. Edge ecE is a loop if
f(e)={u,u}={u}.

* e.g., nodes are campsites
in a state park, edges are
hiking trails through the woods.

12/72
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Directed Graphs

» Correspond to arbitrary binary relations R,
which need not be symmetric.

» A directed graph (V,E) consists of a set of
vertices V and a binary relation E on V.

e E.g.: V = people,
E={(x,y) | x loves y}

15/10/2015 13/72
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Directed Multigraphs

Like directed graphs, but there may be
more than one arc from a node to
another.

A directed multigraph G=(V, E, )
consists of a set V of vertices, a set E of
edges, and a function f.E—>VxV.

E.g., V=web pages,

E=hyperlinks. The WWW is

a directed multigraph...

14/72

Types of Graphs: Summary

e Summary of the book’s definitions.

» Keep in mind this terminology is not fully
standardized...

Edge Multiple Self-

Term edges loops
LR ok? ok?
Simple graph undir. No No
Multigraph Undir. Yes No
Pseudograph uUndir. Yes Yes
Directed simple graph Directed No Yes
Directed multigraph Directed Yes Yes

15/10/2015 1572
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§ 9.2 Graph Terminology

adjacent, or

neighboring scomplete,
degree, «cycles,
connects,

endpoints, ‘wheels,
initial, en-cubes,
terminal, bi .
e *Dipartite,
out-degree, esubgraph,

eunion.

16/72




Adjacency

Let G be an undirected graph with edge set
E. Let ecE be (or map to) the pair {u,v}.

(Note that u and v are vertices!)
Then we say:
* U, v are adjacent / neighbors / connected.
» Edge e is incident with vertices u and v.
* Edge e connects u and v.
* Vertices u and v are endpoints of edge e.

15/10/2015 17/72

Degree of a Vertex

» Let G be an undirected graph, veV a
vertex.

* The degree of v, deg(v), is its number of
incident edges. (Except that any self-loops
are counted twice.)

» A vertex with degree O is isolated.
» A vertex of degree 1 is pendant.

15/10/2015 18/72

Handshaking Theorem

* Let G be an undirected (simple, multi-, or
pseudo-) graph with vertex set V and edge set E.

Then
> _deg(v) = 2|E|

veV
» Proof: Each edge contributes twice to the degree
count of all vertices

» Corollary: Any undirected graph has an even
number of vertices of odd degree.

o N s

15/10/2015 19/72

Example:

If a graph has 5 vertices. can each vertex have degree 37
4?

Solution:

*» The sum is 3+5 = 15 which is an odd number. Not
possible.

* The sumis 20 =2 | E| and 20/2 = 10. May be
possible.

Question for a class: Is it possible to have a graph of 5 vertices each having degree 1?

Answer: It is not!!! (Sum of the degrees of graph is then five, and we know that it must
be EVEN)

15/10/2015 20072




Directed Adjacency

» Let G be a directed (possibly multi-) graph,
and let e be an edge of G that is (or maps
to) (u,v). Then we say:

— u is adjacent to v, v is adjacent from u
— e comes fromu, e goes to v.
—econnectsutov, e goes fromutov
— the initial vertex of e is u

— the terminal vertex of e is v

15/10/2015
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Directed Degree

* Let G be a directed graph, v a vertex of G.
— The in-degree of v, deg=(v), is the number of
edges going to v.
— The out-degree of v, deg*(v), is the number of
edges coming from v.
— The degree of v, deg(v)=deg-(v)+deg*(v), is
the sum of v’s in-degree and out-degree.

15/10/2015 22/72

Directed Handshaking Theorem

* Let G be a directed (possibly multi-) graph
with vertex set V and edge set E. Then:

> deg (v)=> deg"(v) = lZdeg(v) =|E|
veV veV 2vV

* Note that the degree of a node is
unchanged by whether we consider its

edges to be directed or undirected.ﬁ
O—o
oo Lad LS

The visual counting trick here is — count the heads of arrows as deg- and
15/10/2015 count the ends of the tails as deg*

23/72

Special Graph Structures

Special cases of undirected graph structures:
» Complete graphs K,

» Cycles C,

Wheels W,

n-Cubes Q,,

Bipartite graphs

Complete bipartite graphs K, ,

15/10/2015 2afr2




Complete Graphs

* For any neN, a complete graph on n
vertices, K, is a simple graph with n
nodes in which every node is adjacent
(connected) to every other node: Yu,veV:
uzve>{u,v}eE.

AARY B

K, Ka

n(n-1)

Note that K, has >i-""-  edges.

15/10/2015
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Cycles

« For any n>3, a cycle on n vertices, C,, is a
simple graph where V={v,,v,,... ,v,} and
E={vi. Vo {vo. Vst Voo VbV Vil

g eReteiele.

How many edges are there in C.?

Note that in order to get a visually looking cycle,

vertices should be sorted around a ‘circle’ ——
15/10/2015

Wheels

» For any n>3, a wheel W,, is a simple
graph obtained by taking the cycle C,
and adding one extra vertex vy, and n
extra edges {{Vyup, Vit

{thb7V2}’ e 1{thb7vn}}-

R PR

How many edges are there in W, ?

15/10/2015

27172

n-cubes (hypercubes)

» For any neN, the hypercube Q, is a simple
graph consisting of two copies of Q,,;
connected together at corresponding
nodes. Qg has 1 node.

1 W R

Q Q,

Number of vertices: 2". Number of edges: An exercise to try in class!

[Enl = 25E 4 [+IVpal

15/10/2015 28l72




n-cubes (hypercubes)

» For any neN, the hypercube Q, can be
defined recursively as follows:

- Qu={{v,},7} (one node and no edges)

— For any neN, if Q,=(V,E), where V={v,,...,v,}
and E, ={e;,...,e,}, then Q,,;=(VU{v,",....v, '},
Eni = Enfer e Jo{{vy v Bvava b
{vaVva'}) where v;’,...,v,” are new vertices,
and where if e={v;,v,} then e;"={v;",v,'}.

6—o E, V
2 sz,z V7,
e—9

E; Vs E; Vs 20/72
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Bipartite Graphs

» Skipping this topic for this semester...

15/10/2015
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Complete Bipartite Graphs

o Skip...

15/10/2015 iz

Subgraphs

» A subgraph of a graph G=(V,E) is a graph
H=(W,F) where WcV and FcE.

&=~
G H

15/10/2015
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Subgraphs

Notice that the 2-cube occurs
inside the 3-cube JE In other

words, Q,is a subgraph of Q;:

Q: How many Q, subgraphs does Q; have?

6, see next slide!
33/72
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Subgraphs

A: Each face of Q3 is a Q, subgraph so the
answer is 6, as this is the number of sides

of a 3-cube: j
P

15/10/2015 34/72

]

1

Graph Unions

In previous example one can actually
reconstruct the 3-cube from its 6 2-cube

faces: &D
...... /

I 1=H

15/10/2015 35/72

Unions

If we assign the 2-cube sides (i.e., squares)
the names S,, S,, S;3, S,, Sg, Sg then Q; is
the union of its faces:

Q, = S,US,US,US,US.US,
A5

o, "
15/10/9015 < 36/72




Graph Unions

» The union G,UG, of two simple graphs
G,=(V,, E;) and G,=(V,,E,) (where V,,V, may
or may not be disjoint) is the simple graph
(V,uV,, E;UE)), i.e.,

A similar definitions can be created for unions

of digraphs, multigraphs, pseudographs, etc.

15/10/2015 37/72

§ 9.3 Graph Representations & Isomorphism

» Graph representations:
— Adjacency lists.
— Adjacency matrices.
- Incidence matrices.

» Graph isomorphism:

— Two graphs are isomorphic iff they are
identical except for their node names.

15/10/2015 38/72

Adjacency Lists

« A table with 1 row per vertex, listing its
adjacent vertices.

L

15/10/2015

Adjacent
Vertex |Vertices
b, c
a,cef
a,b,f

b
c, b

-~ D O O T D

39/72

Directed Adjacency Lists

* 1 row per node, listing the terminal nodes
of each edge incident from that node.

Adjacent
a b Vertex |Vertices
b,
ce e f
f a, f

-~ D QO O T D

15/10/2015 40/72
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Adjacency Matrix

We already saw a way of representing
relations on a set with a Boolean matrix:
R digraph(R) Mg

Note, the matrix is for a
DIRECTED GRAPH on the left

1 1 1 1

A W DN P
A WODN P

15/10/2015

Adjacency Matrices

* Matrix A=[a;], where a; is 1 if {v;, v} is an

edge of G, 0 otherwise
'&L 1 &

[ e T =
—_ e e O
S = O = O
[ = T S —

—_ = = C) C) ‘
= o = o o
—_ = O =
—_— O = O =

15/10/2015

o = O =
L |

[ S S S
L |

42[72

Adjacency Matrix
(Directed Multigraphs)

Can easily generalize to directed
multigraphs by putting in the number of
edges between vertices, instead of only
allowing 0 and 1:

For a directed multigraph G = (V,E ) define
the matrix Ag by:

* Rows, Columns —one for each vertex in V

e Value at i "row and j " column is

—The number of edges with source the i th
s1oz0is  VErtex and target the j thvertex 2372

Adjacency Matrix
-Directed Multigraphs

Q: What is the adjacency matrix?

o
e/ e\,e’

15/10/2015

44/72
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Adjacency Matrix
-Directed Multigraphs
Z 9‘\ O

F—@ X

o O o o
O kW
SO NN N O
o O O -

15/10/2015
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Adjacency Matrix-General

Undirected graphs can be viewed as directed
graphs by turning each undirected edge
into two oppositely oriented directed edges,
except when the edge is a self-loop in
which case only 1 directed edge is
introduced. EG:

1 2 1 2

& IS

46/72

15/10/2015

Adjacency Matrix-General

Q: What's the adjacency matrix?

1 2

&

15/10/2015

47172

Adjacency Matrix-General

1 2

@

P N O

2
2
1

o L K
o o o

0 0 0 1

Notice that answer is symmetric.

15/10/2015 48/72
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Adjacency Matrix-General

For an undirected graph G = (V,E ) define the
matrix Ag by:

* Rows, Columns —one for each element of V

e Value at i "row and j " column is the
number of edges incidents with vertices
i and j.

15/10/2015 49/72

Isomorphism

The two graphs below are really the same graph.

One is drawn so that no edges intersect (planar).

o
oL

We say these graphs are isomorphic.

15/10/2015 50/72

Graph Isomorphism

» Formal definition:

— Simple graphs G,=(V,, E;) and G,=(V,, E,)
are isomorphic iff 3 a bijection f: V;-5V,
such that vV a,beV;, a and b are adjacent in
G, iff f(a) and f(b) are adjacent in G,.

— f is the “renaming” function that makes the
two graphs identical.

— Definition can easily be extended to other
types of graphs.

15/10/2015 sui2

Graph Invariants under

Isomorphism
Necessary but not sufficient conditions for
G,=(V,, E,) to be isomorphic to G,=(V,, E,):
V1|=|V2|, |E1|=|E2].

— The number of vertices with degree n is the
same in both graphs.

— For every proper subgraph g of one graph,
there is a proper subgraph of the other graph
that is isomorphic to g.

15/10/2015 52/72

13



Are the following 2 graphs isomorphic?

ul

us

Note! Proving isomorphism is a very hard problem. Doing it by hand is a bummer!!! Why?

Invariants - things that GJ and G2 must have in common
to be isomorphic:

« the same number of vertices

« the same number of edges

« degrees of corresponding vertices are the same.
« if one is bipartite, the other must be

« if one is complete, the other must be

« if one is a wheel, the other must be

etc.
15/10/2015 53/72

Solution
Check . ..

+ They have the same number of vertices = 5

+ They have the same number of edges = 8

+ They have the same number of vertices with the

same degrees: 2, 3, 3. 4. 4. . : . . .
= * Now we fry to construct the isomorphism f using the

degrees of vertices to help us.
ul u2
+ deg(u3) = deg(v2) =2 so

us 3 flui) =2

ud . )
is our only choice.

s deg(nl) = deg(ns) = degivl ) = deg(vd) =3 s0

we must have either

1) f{ul) = v1 and flus) = v4
or
+ Finally since deg(u2) = deg(ud) = deg(v3) =
i) fiul) = v4 and fius) = v1 deg(v3) = 4 we must have either

1) f(u2) = v3 and f(u4) = v5

ii) f(u2) = v3 and f(ud) = v3. 2
15/10/2015

Perhaps either choice will work.

or

We first tly the relabeling using i) in each case to get

the function

Permutation Matrix

1%45%4”%24ﬁ55l 1 é 0 0 0
+ permute the rows and columns of the adjagency 0 0 1 0 O
matrix of G/ using the above map to see if we get the P=lo 1 0 0 0
adjacency matrix of G2.
0 0 0 0 1
or 0 0 0 1 O
i}
+ change the labels of the graph G2 to produce the
graph G2* according to the above permutation and
recalculate the adjacency matrix. Recall:
] 0 1 0 1 1]
! 1 01 1 1
Gl={0 1 0 1 0
us 11 1 0 1
Adj. matrices 1 1 0 1 0]
without relabeling _ B
oo 1 1 1
oo 1 01
G2a=/1 1 0 1 1
i1 0 1 0 1
15/10/2015 ' Lt 11 0 5572

MATLAB CODE relabeling i

[01011 )
10111 !nstructorlonly. Run the code
01010 isomorphism_graphs.m
11101
11010]
P = [10000
00100
01000
3o id
00010] 1 0 1 1 1
% Multiply from LEFT to permute the ROWS 1 1 0 1 0
Glr=P*G1 | 31 1 1 0 1
% Multiply from RIGHT to permute the COLUMNS
G2_star = G1r*P 0 0 1 1 1
0O 0 1 o0 1
1 1 0 1 1
1 0 1 0 1
1 1 1 1 0
15/10/2015 He2
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MATLAB CODErelabeling ii

The new labeling of G2, G2*, becomes

ul u2
us u3
ud

vl v3

Solution, cont.

If we did the same steps by multiplying G2

by P from left and right we would have got

_ = O

0 0 1
1 1 1
G2*¥=|0 01
1 1 0
1 01

which is the same adjacency matrix as for G1. Hence we
have found an isomorphism!

15/10/2015
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Gl=1[01011
10111
01010
11101
11010]
P = [00010
00001
01000
00100 R R
| 1|0fo 00] A 1 0 1 1 1
% Multiply from LEFT to permute the ROWS 1 1 0 1 O
G1r = P*G1 | 31 1 1 0 1
% Multiply from RIGHT to permute the COLUMNS
G2_star = G1rP M
15/10/2015 57172
Isomorphism Example
* If isomorphic, label the 2nd graph to
show the isomorphism, else identify
difference.
b
a
ey
e
f
15/10/2015 59f72

Are These Isomorphic?

* If isomorphic, label the 2nd graph to show
the isomorphism, else identify difference.

* Same # of

h vertices
v * Same # of
o) edges
\~ * Different
# of verts of
c € degree 2!

(1vs3)

15/10/2015

60/72
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Which of the graphs below are isomorphic?
A KIMR

A &R,
F&T,

K& X,
M,S,V&Z

15/10/2015 61/72

§ 9.4 Connectivity

In an undirected graph, a path of length n
from u to v is a sequence of adjacent
edges going from vertex u to vertex v.

A path is a circuit if u=v, i.e., if it ends at u
A path traverses the vertices along it.

A path is simple if it contains no edge
more than once.

Note: There is nothing to prevent traversing an edge back and
forth to produce arbitrarily long paths. This is usually not
interesting which is why we define a simple path. T

15/10/2015

Example:

ul u2

us u3
ud

There are many paths from ul to u3 in G1:

1) ul, ud, u2, u3: length = 3, the path is simple

2)ul, us, u4, ul. u2. ul: length = 5, the path is
simple and it contains a circuit ul, us, ud, ul.

3) ul, u2, u5. ud, u3: length = 4, the path is simple
5, 8,9, 10, or more ?
How many simple paths are there?  counm

S o
——_— It's tricky, isn't it? 63/72

Paths in Directed Graphs

e Same as in undirected graphs, but the
path must go in the direction of the arrows.

15/10/2015 64/72

16



Connectedness

» An undirected graph is connected iff
there is a path between every pair of
distinct vertices in the graph.

* Theorem: There is a simple path
between any pair of vertices in a
connected undirected graph.

e Connected component: connected
subgraph

A cut vertex or cut edge separates 1
connected component into 2 if removed.

15/10/2015 65/72

Example

Directed Connectedness

» Adirected graph is strongly connected iff
there is a directed path from a to b for any two
vertices a and b.

* Itis weakly connected iff the underlying
undirected graph (i.e., with edge directions
removed) is connected.

* Note strongly implies weakly but not vice-
versa.

15/10/2015 67/72

vo
Which of these 2
graphsis a
connected
graph? v7 v8
15/10/2015 66/72
Examples:
« strongly connected (hence weakly connected)
* not strongly connected but weakly connected.
L]
15/10/2015 SR
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Paths & Isomorphism

» Note that connectedness, and the
existence of a circuit or simple circuit of
length k are graph invariants with respect
to isomorphism.

15/10/2015 69/72

Counting Paths w Adjacency Matrices

* Let A be the adjacency matrix of graph G.

» The number of paths of length k from v, to
v;is equal to (Ak)i,j. (The notation (M),
denotes m;; where [m; ] = M.)

Caution!!!

We are analyzing undirected graphs here
So, there will be differences in respect to math
we used in Transitive Closures

There, we used Boolean Product

Here, we’ll use a classic/standard matrix
product

Hence, the matrices we’ll get will tell us some
new stories. They will give us some novel and
different insights.

15/10/2015 2

Example:
ul u2
us us
ud
15/10/2015 fos
Number of P 1
How many 2-pathses are there :.l;gai\;hfﬂes
between vertices 1 0 1 1 1
12 1 1 1 0o 1
2209 1 1 0 1 0O
ul u2 (3 2 2 2 2]
2 4 1 3 2
AMr=2 1 2 1 2
us u 2 3 1 4 2
ud
|2 2 2 2 3]
How many 3-pathses are there ‘6 9 4 9 7
between vertices 9 8 7 9 9
o > p a7 2 7 a4
12 9 9 7 8 9
227 Reminder for lecturer only! 7 9 4 9 6
15/10/2015 RUN GRAPHS.M, now!!! - - 72[72
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Here, the Graphs stories end, and
the Chapter 9 on Trees start.

As it may be suspected,
Trees are just special subgroups of
Graphs but,
due to their importance and
overall usefulness Trees are
treated separately and in details!!!

15/10/2015 73/72
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