

A good picture is worth a thousand words

- Expressive power is the first explanation for a success of graphs
- More claims for graphs come later
- Example for a title above follows!

15/10/2015

Greek pre-Socratic Philosophers

- Thales of Miletus influenced Anaximander, Pythagoras, Heraclitus and Anaximenses of Miletus
- Anaximander infl. Pythagoras
- Pherecides of Syros infl. Pythagoras
- Anaximander infl. Heraclitus
- Pythagoras infl. Heraclitus
- Pythagoras infl. Empedocles
- Pythagoras infl. Philolaus
- Pythagoras infl. Archytas
- Pythagoras infl. Alcmaeon of Croton
- Philolaus infl. Archytas
- Heraclitus infl. Parmenides
- Parmenides infl. Democritus
- Democritus infl. Philolaus
- Parmenides infl. Melissus of Samos
- Parmenides infl. Socrates
- Leucippus infl. Democritus, (and this is about 60\% of the story)

Greek pre-Socratic Philosophers

The whole Greek Pre-Socratic Philosopher in GRAPH, and same questions for you now:
Did Heraclitus infl. Archytas? Did Pythagoras infl. Melissus of Samos?

Applications of Graphs

- Potentially anything (graphs can represent relations, relations can describe the extension of any predicate).
- Apps in networking, scheduling, flow optimization, circuit design, path planning.
- Geneology analysis, computer gameplaying, program compilation, objectoriented design, ...

§ 9.1 What are Graphs?

- General meaning in everyday math: A plot or chart of numerical ddoludig a coordinate system. Weamimg
- Technical meaning in discrete mathematics:

A particular class of discrete structures (to be defined) that is useful for representing relations and has a convenient webby-looking graphical representation.

6172

Simple Graphs

- Correspond to symmetric binary relations R.
- A simple graph $G=(V, E)$ consists of:
- a set V of vertices or nodes (V corresponds to the universe of the relation R),
- a set E of edges (arcs, links): unordered pairs of (distinct) elements $u, v \in V$, such that $u R v$.

Note, in a simple graph there is only ONE EDGE ${ }^{\text {between }}$ vertices \& no ARROWS \& no LOOPS Lin2

Example of a Simple Graph

- Let V be the set of states in the southeastern U.S.: $-V=\{F L, G A, A L, M S, L A, S C, T N, N C\}$
- Let $E=\{\{u, v\} \mid u$ adjoins $v\}$ $=\{\{F L, G A\},\{F L, A L\}$, \{GA,AL\}, \{GA,SC\},\{GA,TN\}, \{GA,NC\}, \{AL,MS\}, \{AL,TN\}, \{MS,LA\}, \{MS,TN\}, \{TN,NC\},\{NC,SC\}\}

Multigraphs

- Like simple graphs, but there may be more than one edge connecting two given nodes.
- A multigraph $G=(V, E, f)$ consists of a set V of vertices, a set E of edges (as primitive objects), and a function $f: E \rightarrow\{\{u, v\} \mid u, v \in V \wedge u \neq V\}$.
- e.g., nodes are cities, edges are segments of major highways.

Well, what's simpler and clearer in representing adiacency of SE states ?

Pseudographs

- Like a multigraph, but edges connecting a node to itself are allowed.
- A pseudograph $\mathrm{G}=(V, E, f)$ where $f: E \rightarrow\{\{u, v\} \mid u, v \in V\}$. Edge $e \in E$ is a loop if $f(e)=\{u, u\}=\{u\}$.
- e.g., nodes are campsites in a state park, edges are

Directed Graphs

- Correspond to arbitrary binary relations R, which need not be symmetric.
- A directed graph (V,E) consists of a set of vertices V and a binary relation E on V.
- E.g.: $V=$ people, $E=\{(x, y) \mid x$ loves $y\}$

Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- A directed multigraph $G=(V, E, f)$ consists of a set V of vertices, a set E of edges, and a function $f: E \rightarrow V \times V$.
- E.g., $V=$ web pages, $E=$ hyperlinks. The WWW is a directed multigraph...

Types of Graphs: Summary

- Summary of the book's definitions.
- Keep in mind this terminology is not fully standardized...

Term	Edge type	Multiple edges ok?	Self- loops ok?
Simple graph	Undir.	No	No
Multigraph	Undir.	Yes	No
Pseudograph	Undir.	Yes	Yes
Directed simple graph	Directed	No	Yes
Directed multigraph	Directed	Yes	Yes

§ 9.2 Graph Terminology

- adjacent, or neighboring
- degree,
- connects,
- endpoints,
- initial,
- terminal,
- in-degree,
- out-degree,
-complete,
-cycles,
-wheels,
-n-cubes,
-bipartite,
-subgraph,
-union.
15/10/2015

Adjacency

Let G be an undirected graph with edge set E. Let $e \in E$ be (or map to) the pair $\{u, v\}$.
(Note that u and v are vertices!)

Then we say:

- u, v are adjacent / neighbors / connected.
- Edge e is incident with vertices u and v.
- Edge e connects u and v.
- Vertices u and v are endpoints of edge e.

Handshaking Theorem

- Let G be an undirected (simple, multi-, or pseudo-) graph with vertex set V and edge set E. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

- Proof: Each edge contributes twice to the degree count of all vertices
- Corollary: Any undirected graph has an even number of vertices of odd degree.

Degree of a Vertex

- Let G be an undirected graph, $v \in V a$ vertex.
- The degree of $v, \operatorname{deg}(v)$, is its number of incident edges. (Except that any self-loops are counted twice.)
- A vertex with degree 0 is isolated.
- A vertex of degree 1 is pendant.

Example:

If a graph has 5 vertices, can each vertex have degree 3 ? 4 ?
Solution:

- The sum is $3 \cdot 5=15$ which is an odd number. Not possible.
- The sum is $20=2|E|$ and $20 / 2=10$. May be possible.

Question for a class: Is it possible to have a graph of 5 vertices each having degree 1?

Answer: It is not!!! (Sum of the degrees of graph is then five, and we know that it must be EVEN)
15/10/2015

Directed Adjacency

- Let G be a directed (possibly multi-) graph, and let e be an edge of G that is (or maps to) (u, v). Then we say:
$-u$ is adjacent to v, v is adjacent from u
- e comes from u, e goes to v.
- e connects u to v, e goes from u to v
- the initial vertex of e is u
- the terminal vertex of e is v

Directed Handshaking Theorem

- Let G be a directed (possibly multi-) graph with vertex set V and edge set E. Then:

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=\frac{1}{2} \sum_{v \in V} \operatorname{deg}(v)=|E|
$$

- Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

The visual counting trick here is - count the heads of arrows as deg- and

Directed Degree

- Let G be a directed graph, v a vertex of G.
- The in-degree of $v, \operatorname{deg}^{-}(v)$, is the number of edges going to v.
- The out-degree of $v, \operatorname{deg}^{+}(v)$, is the number of edges coming from v.
- The degree of $v, \operatorname{deg}(v) \equiv \operatorname{deg}^{-}(v)+\operatorname{deg}^{+}(v)$, is the sum of v 's in-degree and out-degree.

Special Graph Structures

Special cases of undirected graph structures:

- Complete graphs K_{n}
- Cycles C_{n}
- Wheels W_{n}
- n-Cubes Q_{n}
- Bipartite graphs
- Complete bipartite graphs $K_{m, n}$

Complete Graphs

- For any $n \in \mathbf{N}$, a complete graph on n vertices, K_{n}, is a simple graph with n nodes in which every node is adjacent (connected) to every other node: $\forall u, v \in V$: $u \neq v \leftrightarrow\{u, v\} \in E$.

$$
\text { Note that } K_{n} \text { has } \sum_{i=1}^{n} i=\frac{n(n-1)}{2} \text { edges. }
$$

Cycles

- For any $n \geq 3$, a cycle on n vertices, C_{n}, is a simple graph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}\right\}$.

How many edges are there in C_{n} ?
Note that in order to get a visually looking cycle, vertices should be sorted around a 'circle'

Wheels

- For any $n \geq 3$, a wheel W_{n}, is a simple graph obtained by taking the cycle C_{n} and adding one extra vertex $v_{\text {hub }}$ and n extra edges $\left\{\left\{V_{\text {nub }}, V_{1}\right\}\right.$,
$\left.\left\{v_{\text {nub }}, v_{2}\right\}, \ldots,\left\{v_{\text {nub }}, v_{n}\right\}\right\}$.

How many edges are there in W_{n} ?

n-cubes (hypercubes)

- For any $n \in \mathbf{N}$, the hypercube Q_{n} is a simple graph consisting of two copies of Q_{n-1} connected together at corresponding nodes. Q_{0} has 1 node.

Number of vertices: 2^{n}. Number of edges: An exercise to try in class!

$$
\left|E_{n}\right|=2^{\star}\left|E_{n-1}\right|+\left|V_{n-1}\right|
$$

15/10/2015

n-cubes (hypercubes)

- For any $n \in \mathbf{N}$, the hypercube Q_{n} can be defined recursively as follows:
- $Q_{0}=\left\{\left\{V_{0}\right\}, \varnothing\right\}$ (one node and no edges)
- For any $n \in \mathbf{N}$, if $\mathrm{Q}_{n}=(V, E)$, where $V=\left\{V_{1}, \ldots, V_{a}\right\}$ and $E_{n}=\left\{e_{1}, \ldots, e_{b}\right\}$, then $Q_{n+1}=\left(V \cup\left\{v_{1}^{\prime}, \ldots, V_{a}{ }^{2}\right\}\right.$, $\mathrm{E}_{n+1}=E_{n} \cup\left\{e_{1}{ }^{\prime}, \ldots, e_{b}{ }^{\prime}\right\} \cup\left\{\left\{v_{1}, v_{1}{ }^{\prime}\right\},\left\{v_{2}, v_{2}{ }^{\prime}\right\}, \ldots\right.$, $\left.\left.\left\{v_{a}, v_{a}^{\prime}\right\}\right\}\right)$ where $v_{1}^{\prime}, \ldots, v_{a}^{\prime}$ are new vertices, and where if $e_{i}=\left\{v_{j}, v_{k}\right\}$ then $e_{i}{ }^{\prime}=\left\{v_{j}{ }^{\prime}, v_{k}^{\prime}\right\}$.

5/10/2015

Bipartite Graphs

- Skipping this topic for this semester...

$$
2
$$

Complete Bipartite Graphs

Subgraphs

- A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.

15/10/2015

Subgraphs

Notice that the 2-cube occurs

Q: How many Q_{2} subgraphs does Q_{3} have?
6, see next slide!

Subgraphs

A: Each face of Q_{3} is a Q_{2} subgraph so the answer is 6 , as this is the number of sides of a 3-cube:

15/10/2015

Graph Unions

In previous example one can actually reconstruct the 3 -cube from its 62 -cube

15/10/2015

Unions

If we assign the 2 -cube sides (i.e., squares) the names $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$ then Q_{3} is the union of its faces:

$$
Q_{3}=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5} \cup S_{6}
$$

Graph Unions

- The union $G_{1} \cup G_{2}$ of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ (where V_{1}, V_{2} may or may not be disjoint) is the simple graph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$, i.e.,
- $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$

A similar definitions can be created for unions of digraphs, multigraphs, pseudographs, etc.

Adjacency Lists

- A table with 1 row per vertex, listing its adjacent vertices.

15/10/2015

§ 9.3 Graph Representations \& Isomorphism

- Graph representations:
- Adjacency lists.
- Adjacency matrices.
- Incidence matrices.
- Graph isomorphism:
- Two graphs are isomorphic iff they are identical except for their node names.

15/10/2015

Directed Adjacency Lists

- 1 row per node, listing the terminal nodes of each edge incident from that node.

15/10/2015

Adjacency Matrix

We already saw a way of representing relations on a set with a Boolean matrix:

R
digraph (R)
M_{R}

Adjacency Matrices

- Matrix $\mathbf{A}=\left[a_{i j}\right]$, where $a_{i j}$ is 1 if $\left\{v_{i}, v_{j}\right\}$ is an edge of $G, 0$ otherwise.

15/10/2015

Adjacency Matrix (Directed Multigraphs)

Can easily generalize to directed multigraphs by putting in the number of edges between vertices, instead of only allowing 0 and 1 :
For a directed multigraph $G=(V, E)$ define the matrix A_{G} by:

- Rows, Columns -one for each vertex in V
- Value at $i^{\text {th }}$ row and $j^{\text {th }}$ column is
- The number of edges with source the $i^{\text {th }}$

15/10/2015 vertex and target the $j^{\text {th }}$ vertex

Adjacency Matrix -Directed Multigraphs

Q: What is the adjacency matrix?

Adjacency Matrix

 -Directed MultigraphsA:

$$
\left(\begin{array}{llll}
0 & 3 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

15/10/2015

Adjacency Matrix-General

Undirected graphs can be viewed as directed graphs by turning each undirected edge into two oppositely oriented directed edges, except when the edge is a self-loop in which case only 1 directed edge is introduced. EG:

Adjacency Matrix-General

Q: What's the adjacency matrix?

Adjacency Matrix-General

A:

$$
\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 2 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Notice that answer is symmetric.
15/10/2015

Adjacency Matrix-General

For an undirected graph $G=(V, E)$ define the matrix A_{G} by:

- Rows, Columns -one for each element of V
- Value at $i^{\text {th }}$ row and $j^{\text {th }}$ column is the number of edges incidents with vertices i and j.

Isomorphism

The two graphs below are really the same graph.
One is drawn so that no edges intersect (planar).

We say these graphs are isomorphic.
15/10/2015

Graph Isomorphism

- Formal definition:
- Simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic iff \exists a bijection $f: V_{1} \rightarrow V_{2}$ such that $\forall a, b \in V_{1}, a$ and b are adjacent in G_{1} iff $f(a)$ and $f(b)$ are adjacent in G_{2}.
- \boldsymbol{f} is the "renaming" function that makes the two graphs identical.
- Definition can easily be extended to other types of graphs.

Graph Invariants under Isomorphism

Necessary but not sufficient conditions for $G_{1}=\left(V_{1}, E_{1}\right)$ to be isomorphic to $G_{2}=\left(V_{2}, E_{2}\right)$: |V1|=|V2|, |E1|=|E2|.

- The number of vertices with degree n is the same in both graphs.
- For every proper subgraph g of one graph, there is a proper subgraph of the other graph that is isomorphic to g.

15/10/2015

Solution

Check.

- They have the same number of vertices $=5$
- They have the same number of edges $=8$
- They have the same number of vertices with the

Are the following 2 graphs isomorphic?

Note! Proving isomorphism is a very hard problem. Doing it by hand is a bummer!!! Why?
Invariants - things that Gl and G2 must have in common to be isomorphic:

- the same number of vertices
- the same number of edges
- degrees of corresponding vertices are the same.
- if one is bipartite, the other must be
- if one is complete, the other must be
- if one is a wheel, the other must be
etc.
- Now we try to construct the isomorphism f using the same degrees: $2,3,3,4,4$. degrees of vertices to help us

$$
\begin{aligned}
\cdot \operatorname{deg}(\mathrm{u} 3)=\operatorname{deg}(\mathrm{v} 2) & =2 \text { so } \\
\mathrm{f}(\mathrm{u} 3) & =\mathrm{v} 2 \quad 1
\end{aligned}
$$

is our only choice.

- $\operatorname{deg}(\mathrm{ul})=\operatorname{deg}(\mathrm{u} 5)=\operatorname{deg}(\mathrm{v} 1)=\operatorname{deg}(\mathrm{v} 4)=3$ so
we must have either 2
or ${ }^{\text {i }}$

$$
\text { ii) } f(u 1)=v 4 \text { and } f(u 5)=v 1
$$

Perhaps either choice will work

15/10/2015

- Finally since $\operatorname{deg}(\mathrm{u} 2)=\operatorname{deg}(\mathrm{u} 4)=\operatorname{deg}(\mathrm{v} 3)=$
$=4$ we must have either $\operatorname{deg}(\mathrm{v} 5)=4$ we must have either

$$
\begin{array}{ll}
4 & \text { i) } f(u 2)=v 3 \text { and } f(u 4)=v 55 \\
\hline \text { or }
\end{array}
$$

$$
\text { ii) } f(u 2)=v 5 \text { and } f(u 4)=v 3 \text {. }
$$

MATLAB CODE relabeling i

$\mathrm{G} 1=\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}\right.$

10111
01010
11101
11010
$P=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right.$
00100
01000
00001
00010]
\% Multiply from LEFT to permute the ROWS $\mathrm{G} 1 \mathrm{r}=\mathrm{P} * \mathrm{G} 1$

Instructor only: Run the cod isomorphism_graphs.m
\% Multiply from RIGHT to permute the COLUMNS G2_star = G1r*P

15/10/2015
MATLAB CODE relabeling ii
$\mathrm{G} 1=\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}\right.$
10111
01010
11101
$P=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]$
00001
01000
00100
10000]
\% Multiply from LEFT to permute the ROWS $\mathrm{G} 1 \mathrm{r}=\mathrm{P} * \mathrm{G} 1$
\% Multiply from RIGHT to permute the COLUMNS G2_star = G1r*P

15/10/2015 \qquad

Isomorphism Example

- If isomorphic, label the 2 nd graph to show the isomorphism, else identify difference.

15/10/2015

Are These Isomorphic?

- If isomorphic, label the 2 nd graph to show the isomorphism, else identify difference.

* Same \# of vertices
* Same \# of edges
* Different \# of verts of degree 2! (1 vs 3)

15/10/2015

§ 9.4 Connectivity

- In an undirected graph, a path of length n from u to v is a sequence of adjacent edges going from vertex u to vertex v.
- A path is a circuit if $u=v$, i.e., if it ends at u
- A path traverses the vertices along it.
- A path is simple if it contains no edge more than once.

Note: There is nothing to prevent traversing an edge back and forth to produce arbitrarily long paths. This is usually not interesting which is why we define a simple path.

Example:

Paths in Directed Graphs

- Same as in undirected graphs, but the path must go in the direction of the arrows.

1) $u 1, u 4, u 2$, $u 3$; length $=3$, the path is simple
2) $u 1, u 5, u 4, u 1, u 2, u 3$; length $=5$, the path is simple and it contains a circuit $\mathrm{u} 1, \mathrm{u} 5, \mathrm{u} 4, \mathrm{u} 1$.
3) $u 1, u 2, u 5, u 4, u 3$; length $=4$, the path is simple $5,8,9,10$, or more ?
How many simple paths are there?
Count!!!
It's tricky, isn't it?
63172

Connectedness

- An undirected graph is connected iff there is a path between every pair of distinct vertices in the graph.
- Theorem: There is a simple path between any pair of vertices in a connected undirected graph.
- Connected component: connected subgraph
- A cut vertex or cut edge separates 1 connected component into 2 if removed.
15/10/2015

Example

Which of these 2 graphs is a connected graph?

Both are!!!
\qquad
15/10/2015

Directed Connectedness

- A directed graph is strongly connected iff there is a directed path from a to b for any two vertices a and b.
- It is weakly connected iff the underlying Examples:
- strongly connected (hence weakly connected)

- not strongly connected but weakly connected. undirected graph (i.e., with edge directions removed) is connected.
- Note strongly implies weakly but not viceversa.

Paths \& Isomorphism

- Note that connectedness, and the existence of a circuit or simple circuit of length k are graph invariants with respect to isomorphism.

Caution!!!

- We are analyzing undirected graphs here
- So, there will be differences in respect to math we used in Transitive Closures
- There, we used Boolean Product
- Here, we'll use a classic/standard matrix product
- Hence, the matrices we'll get will tell us some new stories. They will give us some novel and different insights.

Counting Paths w Adjacency Matrices

- Let \mathbf{A} be the adjacency matrix of graph G.
- The number of paths of length k from v_{i} to v_{j} is equal to $\left(\mathbf{A}^{k}\right)_{i, j}$. (The notation ($\left.\mathbf{M}\right)_{i, j}$ denotes $m_{i, j}$ where $\left[m_{i, j}\right]=\mathbf{M}$.)

Example:

15/10/2015

Here, the Graphs stories end, and the Chapter 9 on Trees start.

As it may be suspected,
Trees are just special subgroups of Graphs but,
due to their importance and overall usefulness Trees are treated separately and in details!!!

15/10/2015

