

Applications of Graphs

- Potentially anything (graphs can represent relations, relations can describe the extension of any predicate).
- Apps in networking, scheduling, flow optimization, circuit design, path planning.
- Geneology analysis, computer gameplaying, program compilation, objectoriented design, ...

7/72

Simple Graphs

• Correspond to symmetric binary relations *R*.

• A simple graph G=(V,E) consists of:

Visual Representation of a Simple Graph

- a set V of vertices or nodes (V corresponds to the universe of the relation R),
- a set *E* of edges (arcs, links): unordered pairs of (distinct) elements *u*, *v* ∈ *V*, such that *uRv*.

Note, in a simple graph there is only ONE EDGE between vertices & no ARROWS & no LOOPS

Types of Graphs: Summary

- Summary of the book's definitions.
- Keep in mind this terminology is not fully standardized...

Term	Edge type	Multiple edges ok?	Self- loops ok?	
Simple graph	Undir.	No	No	-
Multigraph	Undir.	Yes	No	
Pseudograph	Undir.	Yes	Yes	
Directed simple graph	Directed	No	Yes	
Directed multigraph	Directed	Yes	Yes	
/10/2015				1

§ 9.2 Graph Terminology • adjacent, or •complete, neighboring • degree, •cycles, • connects. •wheels. • endpoints, • initial. •n-cubes. • terminal, •bipartite, • in-degree, •subgraph, • out-degree, •union. 16/72 15/10/2015

Handshaking Theorem

 Let G be an undirected (simple, multi-, or pseudo-) graph with vertex set V and edge set E. Then

$$\sum_{v \in V} \deg(v) = 2|E|$$

- Proof: Each edge contributes twice to the degree count of all vertices
- Corollary: Any **undirected** graph has an **even** number of vertices of **odd degree**.

Example:

If a graph has 5 vertices, can each vertex have degree 3? 4?

Solution:

• The sum is $3 \cdot 5 = 15$ which is an odd number. Not possible.

• The sum is 20 = 2 | E | and 20/2 = 10. May be possible.

Question for a class: Is it possible to have a graph of 5 vertices each having degree 1?

Answer: It is not!!! (Sum of the degrees of graph is then five, and we know that it must be EVEN)
15/10/2015 20/72

Directed Handshaking Theorem

• Let G be a directed (possibly multi-) graph with vertex set V and edge set E. Then:

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = \frac{1}{2} \sum_{v \in V} \deg(v) = |E|$$

 Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

Special Graph Structures

Special cases of undirected graph structures:

- Complete graphs K_n
- Cycles C_n
- Wheels W_n
- *n*-Cubes Q_n
- Bipartite graphs
- Complete bipartite graphs K_{m,n}

```
15/10/2015
```

22/72

Graph Unions

- The union $G_1 \cup G_2$ of two simple graphs $G_1=(V_1, E_1)$ and $G_2=(V_2, E_2)$ (where V_1, V_2 may or may not be disjoint) is the simple graph $(V_1 \cup V_2, E_1 \cup E_2)$, i.e.,
 - $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$
- A similar definitions can be created for unions of digraphs, multigraphs, pseudographs, etc.

37/72

15/10/2015

Adjacency Matrix (Directed Multigraphs)

- Can easily generalize to **directed** multigraphs by putting in the number of edges between vertices, instead of only allowing 0 and 1:
- For a directed multigraph G = (V, E) define the matrix A_G by:
- Rows, Columns –one for each vertex in V
- Value at *i*th row and *j*th column is
 - The number of edges with source the *i*th

Adjacency Matrix-General

Undirected graphs can be viewed as directed graphs by turning each undirected edge into two oppositely oriented directed edges, *except when the edge is a self-loop in which case only 1 directed edge is introduced.* EG:

- For an undirected graph G = (V, E) define the matrix A_G by:
- Rows, Columns –one for each element of V
- Value at *i* th row and *j* th column is the number of edges incidents with vertices *i* and *j*.

15/10/2015

49/72

Isomorphism

The two graphs below are really the same graph.

One is drawn so that no edges intersect (planar).

We first try the relabeling using i) in each case to get the function 1 2 3 4		Permutation Matrix						
$3 \rightarrow 2, 1 \rightarrow 1, 5 \rightarrow 4, 2 \rightarrow 3, 4 \rightarrow 5$			[1	0	0	0	0	
 permute the rows and columns of the adjacency 			0	0	1	0	0	
matrix of G1 using the above map to see if we get the			0	1	0	0	0	
adjacency matrix of G2.			0	0	0	0	1	
or			0	0	0	1	0	
			L	Ŭ	0	Ť		
• change the labels of the graph $G2$ to produce the graph $G2^*$ according to the above permutation and recalculate the adjacency matrix. Recall:								
		Го	1	0	1	17		
		1	0	1	1	1		
	G1	= 0	1	0	1	0		
u5 🔶 🔴 u3		1	1	1	0	1		
u4 Adj. matrices	~ a	1	1	0	1	0		
	iy	Γo	0	1	1	1		
		0	0	1	0	1		
v5 🖉 v3	G2	= 1	1	0	1	1		
		1	0	1	0	1		
15/10/2015		[1	1	1	1	0	55/72	

§ 9.4 Connectivity In an undirected graph, a path of length n from u to v is a sequence of adjacent edges going from vertex u to vertex v. A path is a circuit if u=v, i.e., if it ends at u A path traverses the vertices along it. A path is simple if it contains no edge more than once. Note: There is nothing to prevent traversing an edge back and forth to produce arbitrarily long paths. This is usually not interesting which is why we define a simple path. 6272

Connectedness

- An undirected graph is connected iff there is a path between every pair of distinct vertices in the graph.
- Theorem: There is a *simple* path between any pair of vertices in a connected undirected graph.
- Connected component: connected subgraph
- A *cut vertex* or *cut edge* separates 1 connected component into 2 if removed.

65/72

15/10/2015

<section-header><list-item><list-item><list-item><list-item>

Paths & Isomorphism

 Note that connectedness, and the existence of a circuit or simple circuit of length k are graph invariants with respect to isomorphism.

Counting Paths w Adjacency Matrices

- Let **A** be the adjacency matrix of graph G.
- The number of paths of length k from v_i to v_j is equal to (A^k)_{i,j}. (The notation (M)_{i,j} denotes m_{i,i} where [m_{i,i}] = M.)

Caution!!!

- We are analyzing undirected graphs here
- So, there will be differences in respect to math we used in Transitive Closures
- There, we used Boolean Product
- Here, we'll use a classic/standard matrix product
- Hence, the matrices we'll get will tell us some new stories. They will give us some novel and different insights.

15/10/2015

Here, the **Graphs** stories end, and the **Chapter 9** on **Trees** start.

As it may be suspected, **Trees** are just special subgroups of **Graphs but**, **due to their importance and overall usefulness Trees are treated separately and in details!!!**

15/10/2015